D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
usr
/
local
/
src
/
Python-3.9.9
/
Modules
/
_decimal
/
libmpdec
/
Filename :
sixstep.c
back
Copy
/* * Copyright (c) 2008-2020 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "mpdecimal.h" #include <assert.h> #include <stdio.h> #include "bits.h" #include "constants.h" #include "difradix2.h" #include "numbertheory.h" #include "sixstep.h" #include "transpose.h" #include "umodarith.h" /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the form 2**n (See literature/six-step.txt). */ /* forward transform with sign = -1 */ int six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { struct fnt_params *tparams; mpd_size_t log2n, C, R; mpd_uint_t kernel; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_uint_t *x, w0, w1, wstep; mpd_size_t i, k; assert(ispower2(n)); assert(n >= 16); assert(n <= MPD_MAXTRANSFORM_2N); log2n = mpd_bsr(n); C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */ R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */ /* Transpose the matrix. */ if (!transpose_pow2(a, R, C)) { return 0; } /* Length R transform on the rows. */ if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) { return 0; } for (x = a; x < a+n; x += R) { fnt_dif2(x, R, tparams); } /* Transpose the matrix. */ if (!transpose_pow2(a, C, R)) { mpd_free(tparams); return 0; } /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ SETMODULUS(modnum); kernel = _mpd_getkernel(n, -1, modnum); for (i = 1; i < R; i++) { w0 = 1; /* r**(i*0): initial value for k=0 */ w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */ wstep = MULMOD(w1, w1); /* r**(2*i) */ for (k = 0; k < C; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */ a[i*C+k] = x0; a[i*C+k+1] = x1; } } /* Length C transform on the rows. */ if (C != R) { mpd_free(tparams); if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) { return 0; } } for (x = a; x < a+n; x += C) { fnt_dif2(x, C, tparams); } mpd_free(tparams); #if 0 /* An unordered transform is sufficient for convolution. */ /* Transpose the matrix. */ if (!transpose_pow2(a, R, C)) { return 0; } #endif return 1; } /* reverse transform, sign = 1 */ int inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { struct fnt_params *tparams; mpd_size_t log2n, C, R; mpd_uint_t kernel; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_uint_t *x, w0, w1, wstep; mpd_size_t i, k; assert(ispower2(n)); assert(n >= 16); assert(n <= MPD_MAXTRANSFORM_2N); log2n = mpd_bsr(n); C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */ R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */ #if 0 /* An unordered transform is sufficient for convolution. */ /* Transpose the matrix, producing an R*C matrix. */ if (!transpose_pow2(a, C, R)) { return 0; } #endif /* Length C transform on the rows. */ if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) { return 0; } for (x = a; x < a+n; x += C) { fnt_dif2(x, C, tparams); } /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ SETMODULUS(modnum); kernel = _mpd_getkernel(n, 1, modnum); for (i = 1; i < R; i++) { w0 = 1; w1 = POWMOD(kernel, i); wstep = MULMOD(w1, w1); for (k = 0; k < C; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); a[i*C+k] = x0; a[i*C+k+1] = x1; } } /* Transpose the matrix. */ if (!transpose_pow2(a, R, C)) { mpd_free(tparams); return 0; } /* Length R transform on the rows. */ if (R != C) { mpd_free(tparams); if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) { return 0; } } for (x = a; x < a+n; x += R) { fnt_dif2(x, R, tparams); } mpd_free(tparams); /* Transpose the matrix. */ if (!transpose_pow2(a, C, R)) { return 0; } return 1; }